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Abstract 

 This paper analyzed forecasting performances of the Autoregressive Mixed-Data 

Sampling model (AR-MIDAS) with the use of financial real time data on Consumption and 

Investment expenditures components of Thailand gross domestic product. An AR-MIDAS model 

is a regression model that allows dependent variables and independent variables to be in different 

frequencies. The model makes great use of real time data with high frequencies despite the facts 

that macroeconomic variables are collected in low frequencies. By comparing it to the alternative 

time series models which are Autoregressive model and Autoregressive Distributed Lags model, 

the results showed that AR-MIDAS model outperforms other models almost all of the time for 

all independent variables that were selected. It is clear that financial data actually can be used to 

help forecast macroeconomic variables. In addition, choosing independent variables are very 

important to the performance of the models.  
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1.) Introduction 

 Forecasting macroeconomic variables are very important for policy makers, firms and 

institution. Under the assumption that financial data are forward looking and any information 

available at the time are already incorporated to the values of those assets, using financial 

indicators in the regression models should help forecasting macroeconomic indicators. However, 

macroeconomic variables are sampled in low frequency, while financial data are sampled in 

higher frequency. Different frequencies of data makes forecasting complicated because 

regression models typically use variables that have the same frequency only. Therefore, within-

period financial data cannot be used to help forecast until the data are available at the end of the 

dependent variable period. 

Ghysels, Santa-Clara, and Valkanov (2004) introduced the mixed-data sampling 

(MIDAS) model to deal with this problem. MIDAS models allow variables to be sampled at 

different frequencies. Unlike other models, MIDAS models make use of within-period of higher 

frequency data. 

Many previous studies confirmed that MIDAS model outperforms other alternative 

models. For example, Andreou, Ghysels, and Kourtellos (2013) showed that MIDAS model is 

able to incorporate information from forward-looking nature of financial daily data and used it 

for forecasting the quarterly economic growth. MIDAS model combined daily information in an 

effective way and outperformed traditional models. Similarly, Clements, and Galvão (2008) 

found that MIDAS model makes use of monthly data better than other models, and performed 

even better with within quarter data. However, Armesto, Engemann, and Owyang (2010) had 

different results. MIDAS model do not have big advantage over other models. Each model 

varied. 

 In this paper, MIDAS models were being evaluated and compared with alternative 

models based on the information of previous studies. This paper focused on forecasting 

consumption and investment components of Thailand gross domestic product (GDP) separated 

by types of expenditure between the first quarter of 1996 to the fourth quarter of 2016 only while 

financial data are monthly data between the first month of 1996 and the last month of 2016. 
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2.) Regression Models 

There are three regression models used in this paper which are Autoregressive (AR) 

model, Autoregressive Distributed Lag Model (ARDL) model, and Autoregressive Mixed Data 

Sampling (AR-MIDAS) model. 

Autoregressive (AR) model 

Autoregressive (AR) models were being used as a benchmark model for this paper. An 

AR model is a time series model that includes lagged values of independent variable (𝑦) in the 

regression model. The general form of an AR model is: 

𝑦𝑡 =  𝜇 +  ∑ 𝛾𝑖𝑦𝑡−𝑖 +  𝜀𝑡

𝑝

𝑖=1

   … (1) 

where 𝜇 is the intercept coefficient, 𝑝 is the number of lags of 𝑦, 𝛾 is the estimated coefficient, 𝑡 

indexes the time unit, and 𝜀 is an error term. 

Autoregressive distributed lag (ARDL) model  

Distributed lag models are time series models that include lagged values of independent 

variables (𝑥). An Autoregressive Distributed Lag (ARDL) model is one of the distributed lag 

models. The ARDL models are used in this paper because the model not only include the lagged 

values of independent variable (𝑥) but also include lagged values of dependent variables (𝑦) just 

like the AR models. The ARDL model can be specified as: 

𝑦𝑡 = 𝜇 +  ∑ 𝛾𝑖𝑦𝑡−𝑖 + ∑ 𝛽𝑗𝑥𝑡−𝑗

𝑟

𝑗=0

𝑝

𝑖=1

+ 𝜀𝑡    … (2) 

This equation is achieved by include independent variables part ∑ 𝛽𝑗𝑥𝑡−𝑗
𝑟
𝑗=0  in the equation (1) 

where 𝑟 is the number of lags of independent variable. Therefore, the ARDL models use other 

variables to help explained dependent variables rather than using only its past values. 
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Time aggregation scheme 

 As financial data in this paper are all monthly frequency while dependent variables which 

are consumption and investment are quarterly data. It is necessary to convert monthly financial 

data to quarterly data in order to estimate ARDL models. The time aggregation scheme that are 

used in this paper is simple average scheme. By averaging three months data, quarterly data will 

be achieved as in the equation below. 

𝑥𝑡
𝑄 = (𝑥1,𝑡

𝑀 + 𝑥2,𝑡
𝑀 + 𝑥3,𝑡

𝑀 )/3 

where 𝑥𝑡
𝑄

 is the quarterly data, while 𝑥1,𝑡
𝑀 , 𝑥2,𝑡

𝑀 , 𝑥3,𝑡
𝑀  are the first month, the second month and the 

third month data of the quarter at time t respectively. 

Autoregressive Mixed data sampling (AR-MIDAS) model 

The MIDAS models of Ghysels, Santa-Clara, and Valkanov (2004) are closely related to 

distributed lag models. However, the model allows independent variables (𝑥) to be sampled in 

different frequency from the dependent variable (𝑦). In this paper, An AR-MIDAS model is used 

instead of a MIDAS model because it includes autoregressive term. The AR-MIDAS model with 

one independent variable is specified as;   

𝑦𝑡 = 𝛽0 + ∑ 𝛾𝑖𝑦𝑡−𝑖 +

𝑝

𝑖=1

𝛽1 ∑ 𝑤(𝑖; 𝜃)

𝐾

𝑖=1

𝑥𝑡−(𝑖−1)/3
(𝑚)

+ 𝜀𝑡    … (3) 

where 𝐾 is the number of lags of independent variable, 𝑡 indexes the basic time unit (lower 

frequency), 𝑤(𝑖; 𝜃) is the weight function, and 𝑚 is the number of higher sampling frequency in 

the lower sampling frequency. As the higher frequency in this paper is monthly while the lower 

one is quarterly, so 𝑚 = 3. Therefore, equation (3) can be written as: 

𝑦𝑡 = 𝛽0 + ∑ 𝛾𝑖𝑦𝑡−𝑖

𝑝

𝑖=0

+ 𝛽1[𝑤(1; 𝜃)𝑥𝑡
(3)

+ 𝑤(2; 𝜃)𝑥
𝑡−

1
3

(3)
 

+𝑤(3; 𝜃)𝑥
𝑡−

2
3

(3)
+ ⋯ + 𝑤(𝐾; 𝜃)𝑥

𝑡−
𝐾−1

3

(3)
] + 𝜀𝑡 



4 
 

 The differences between equation (2) and (3) are that independent variables are in higher 

frequency than dependent variables and that coefficient are in the weight function form. 

Weighting scheme 

 The weight function 𝑤(𝑖; 𝜃) has to be chosen in order to estimate AR-MIDAS models. 

The reason for using weight function for independent variables is because it reduces the number 

of parameters that are needed to be estimated. The main weight function that will be used in this 

paper is Exponential Almon polynomial function. 

𝑤(𝑖; 𝜃) =
exp(𝜃1𝑖 + 𝜃2𝑖2)

∑ exp(𝜃1𝑖 + 𝜃2𝑖2)𝑟
𝑖=1

 

This function reduces the number of estimated parameters. The function also has high 

flexibility, time series samples can have a decay memory form which recent pasts have higher 

weight than more distant pasts. 

Forecast horizon  

Forecast horizon is the number of periods ahead from current period that will be 

forecasted in a certain model. All of the information available before the current period is being 

used. In this paper, models are selected for each forecast horizon. As AR models and ARDL 

models have the same frequency for each variable, forecast horizon will be in a whole unit. For 

instance, h=1 represents one quarter ahead forecast horizon, h=2 represents two quarter ahead 

forecast horizon. 

However, in this paper, dependent variables in AR-MIDAS models are collected in 

quarterly period while independent variables are collected in monthly period. If there are 

independent variables available on the first two months (t=2/3) of the current quarter are 

available, forecasting horizon for the next quarter (𝑡 = 1) and the next two quarters (𝑡 = 2) will be 

ℎ = 1/3 and ℎ = 4/3 respectively. If the information are available only on the first month of the 

quarter (t=1/3), forecasting horizon for the next quarter and next two quarters will be ℎ = 2/3 and 

ℎ = 5/3 respectively. 

Forecast horizon h=0 is possible for ARDL and AR-MIDAS models because independent 

variables which are financial data are available in real time. 
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3.) Data 

Variables Selection 

Consumption 

There are some existing works related to variables that have correlation with private 

consumption. Some papers have found correlation between consumer spending and consumer 

confidence index. Ludvigson (2004) found that consumer confidence can be used to forecast 

quarterly growth of consumption expenditure because it has high predicting ability. Croushore 

(2005) found that there is a correlation between consumer confidence and consumer spending 

but he did not prove that consumer confidence has any predictive role. The correlation can be 

drove by other macroeconomic variables. On the other hand, Batchelor, and Dua (1998) found 

that consumer confidence improved forecast only in the recession period, it should not be 

considered in other period of time.  

There are also many previous studies that found positive correlation between stock prices 

and consumer spending.  Poterba (2000) suggested that the correlation is an effect of increase in 

stock market wealth. However, he also stated that stock prices affect household consumption 

because of consumers’ perception and consumer confidence even though they do not own any 

stock. Similarly, Dynan and Maki (2001) stated that there are two reasons why changes in stock 

prices affect consumption which they found that changes in wealth affect consumption more than 

changes in future income. Ludwig and Siek (2004) also found positive relationship between 

stock prices and consumption. However, they found that changes in stock prices affect 

consumption for market-based financial system countries more than countries with a bank-based 

financial system.  

Therefore, consumer confidence index and stock market indexes were used as 

independent variables for consumption regression model. 

Investment 

In term of investment component, there are several studies relating stock markets and 

investment. Barro (1990) stated that stock market price has higher forecasting ability for 

investment. It is much better than Tobin’s q. In contrast, Harvey (1989) found that stock market 
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index explained only five percent of economic growth while bond markets could explain more 

than thirty percent. 

 Independent variables for investment regression that were used in this paper are stock 

market indexes 

Table1: Data: variable names, data frequencies and sources of data 

Name Variable Measurement Source 

Dependent variables 

Consumption 
Private Consumption 

Expenditures 
Quarterly 

National Economic and 

Social Development 

Board Investment 
Gross Fixed Capital Formation, 

Change in inventories 

(Chained Volume Measures, reference year = 2002) 

Independent variables 

CCI 
Thailand Consumer 

Confidence Index 

Monthly 

University of the Thai 

Chamber of Commerce 

SETcons 
SET Fashion, SET Home, SET 

Person Indexes Stock Exchange of 

Thailand SETindex SET Index 

SET50 SET50 Index 

 

Unit root test 

 In order to use time series models, time series samples should be stationary, any non-

stationary time series should be differenced until it becomes. In this paper, Augmented Dicky-

Fuller (ADF) tests, Phillips-Perron (PP) Unit Root tests and Kwiatkowski-Phillips-Schmidt-Shin 

(KPSS) tests are used to see whether a certain time series is needed to take difference or not. 

 ADF tests and PP tests test the null hypothesis that a unit root is present in a certain time 

series sample. The alternative hypothesis is that the time series sample is stationary. In contrast, 

KPSS tests test the null hypothesis of stationary process, while the alternative is a presence of a 

unit root. 

 



7 
 

 

Table2: p-values of ADF test, PP test and KPSS test for each variable 

Variables 

Augmented 

Dickey-Fuller test 

(Ha: Stationary) 

Phillips-Perron Unit 

Root test 

(Ha: Stationary) 

KPSS test 

(Ha: presence of a 

unit root) 

log(Consumption) p-value = 0.1466 p-value = 0.5637 p-value = 0.01 

d/dt(log(Consumption)) p-value = 0.01609 p-value = 0.01 p-value = 0.1 

log(Investment) p-value = 0.3107 p-value = 0.8268 p-value = 0.01 

d/dt(log(Investment)) p-value = 0.1192 p-value = 0.01 p-value = 0.1 

log(CCIq*) p-value = 0.5406 p-value = 0.03612 p-value = 0.04949 

d/dt(log(CCIq)) p-value = 0.01 p-value = 0.01 p-value = 0.09312 

log(SETindexq*) p-value = 0.5397 p-value = 0.8212 p-value = 0.01 

d/dt(log(SETindexq)) p-value = 0.01 p-value = 0.01 p-value = 0.1 

log(SETconsq*) p-value = 0.01756 p-value = 0.5582 p-value = 0.01 

d/dt(log(SETconsq)) p-value = 0.0719 p-value = 0.01 p-value = 0.08231 

log(SET50q*) p-value = 0.01371 p-value = 0.4953 p-value = 0.01 

d/dt(log(SET50q)) p-value = 0.02959 p-value = 0.01 p-value = 0.1 

log(CCI) p-value = 0.02272 p-value = 0.05658 p-value = 0.04039 

d/dt(log(CCI)) p-value = 0.01 p-value = 0.01 p-value = 0.04491 

log(SETindex) p-value = 0.7156 p-value = 0.8121 p-value = 0.01 

d/dt(log(SETindex)) p-value = 0.01 p-value = 0.01 p-value = 0.1 

log(SETcons) p-value = 0.07642 p-value = 0.6542 p-value = 0.01 

d/dt(log(SETcons)) p-value = 0.01 p-value = 0.01 p-value = 0.09317 

log(SET50) p-value = 0.02382 p-value = 0.5096 p-value = 0.01 

d/dt(log(SET50)) p-value = 0.01 p-value = 0.01 p-value = 0.1 

*CCIq, SETindexq, SETconsq and SET50q are quarterly data that have been converted from 

monthly data to quarterly data by using simple average scheme mentioned before. 

 

It is clear that every variable are stationary after the first difference. Therefore, the first 

difference of each variable are used to estimate regression models. 
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4.) Methodology 

Regressions 

 For both consumption and investment, regression models for each of the three time series 

models were choose. AR models are selected using Akaike Information Criterion (AIC). ARDL 

models for each independent variable with minimum AIC are selected in three forecast horizons 

which are current period (h=0), one period ahead (h=1) and two periods ahead (h=2). Lastly, 

AR-MIDAS models for each independent variable with minimum AIC are selected in seven 

forecast horizons which are present period (h=0), one month ahead (h=1/3), two months ahead 

(h=2/3), one quarter ahead (h=1), four months ahead (h=4/3), five months ahead (h=5/3) and two 

quarters ahead (h=2) 

 

Consumption 

Data that are used to estimate each model are from Jan, 1999 to Dec, 2012. For ARDL 

and AR-MIDAS models, Consumer Confidence index, SET index and SET Consumption index 

are used as independent variables. 

 

Table3: Consumption regression models: variables used for each independent variable 

Models 

Independent variables 

CCI SET index SET consumption 

AR y = d/dt(log(Consumption)) 

ARDL y = d/dt(log(Consumption)) 

x = d/dt(log(CCIq)) x = d/dt(log(SETindexq)) x = d/dt(log(SETconsq)) 

AR-MIDAS y = d/dt(log(Consumption)) 

x = d/dt(log(CCI)) x = d/dt(log(SETindex)) x = d/dt(log(SETcons)) 
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Investment 

 Data that are used to estimate each model are from Jan, 1996 to Dec, 2012. For ARDL 

and AR-MIDAS models, SET index and SET 50 index are used as independent variables. 

 

Table4: Investment regression models: variables used for each independent variable 

Models 

Independent variables 

SET index SET50 index 

AR model y = d/dt(log(Investment)) 

ARDL y = d/dt(log(Investment)) 

x = d/dt(log(SETindexq)) x = d/dt(log(SET50q)) 

AR-MIDAS y = d/dt(log(Investment)) 

x = d/dt(log(SETindex)) x = d/dt(log(SET50)) 

 

Diagnostic check 

 Before using any model to forecast, it is necessary to do a diagnostic check. The residuals 

of the model should not be correlated. The tests that are used in this paper for diagnostic check 

are Box-Pierce tests which the null hypothesis is that the data are purely random, while the 

alternative hypothesis is that the data have serial correlation. Therefore, the tests are used on the 

residuals of each selected models to see whether the residuals are purely random or not. The 

Table5 and Table6 show the p-values of the tests of each selected model. Each p-value should be 

bigger than 0.05 in order to use the model to forecast. 

  

Out-of-sample forecasts 

 The data will be divided into two parts; in-sample and out-sample. In-sample data are 

used to estimate regression models, for Consumption, in-sample periods are from Jan, 1999 to 

Dec, 2012, while for Investment, in-sample periods are from Jan, 1996 to Dec, 2012. Out-sample 

data are the data used as actual values to be compared with forecast values of each estimated 

model from in-sample periods. The differences between actual values and forecast values are 

forecast errors. Out-sample periods for both Consumption and Investment are from the first 

quarter of 2013 to the last quarter of 2016 which are 16 periods. Within out-sample periods, root 
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mean squared forecast errors (RMSFEs) are calculated in order to compare between the three 

models, forecast horizons and independent variables. 

 As the AR models are used as benchmark models, in order to compare the ARDL models 

forecasting performance with the AR models, the ratios between RMSFEs of the ARDL and the 

AR models are computed. The RMSFEs of the ARDL models with forecast horizons equal to 0 

and 1 are divided by the RMSFEs of the AR models with forecast horizon equal to 1, while the 

RMSFEs of the ARDL models with h=2 are divided by the RMSFEs of the AR models with h=2. 

In order to compare AR-MIDAS with AR models, the RMSFEs of the AR-MIDAS models with 

forecast horizons equal to 0, 1/3, 2/3 and 1 are divided by the RMSFEs of the AR models with 

forecast horizon equal to 1. The RMSFEs of the AR-MIDAS with h=4/3, 5/3 and 2 are divided 

by the RMSFEs of the AR models with h=2. 

 

Table5: p-values of the Box-Pierce tests for the residuals  

of each selected Consumption regression models 

Forecast 

Horizon AR 

CCI SET index SET consumption 

ARDL MIDAS ARDL MIDAS ARDL MIDAS 

h=0  p-value = 

0.66 

p-value = 

0.452 

p-value = 

0.1658 

p-value = 

0.3597 

p-value = 

0.2027 

p-value = 

0.5145 

h=1/3  p-value = 

0.4711 

 p-value = 

0.291 

 p-value = 

0.4309 

h=2/3 p-value = 

0.6069 

p-value = 

0.3803 

p-value = 

0.1268 

h=1 p-value = 

0.7094 

p-value = 

0.726 

p-value = 

0.7827 

p-value = 

0.1948 

p-value = 

0.2316 

p-value = 

0.1918 

p-value = 

0.13 

h=4/3   p-value = 

0.739 

 p-value = 

0.3239 

 p-value = 

0.3123 

h=5/3 p-value = 

0.6577 

p-value = 

0.1527 

p-value = 

0.1348 

h=2 p-value = 

0.4844 

p-value = 

0.5145 

p-value = 

0.3528 

p-value = 

0.1953 

p-value = 

0.1602 

p-value = 

0.3667 

p-value = 

0.0944 
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Table6: p-values of the Box-Pierce tests for the residuals 

of each selected Investment regression models 

Forecast 

Horizon AR 

SET index SET50 index 

ARDL MIDAS ARDL MIDAS 

h=0  p-value = 

0.5563 

p-value = 

0.5822 

p-value = 

0.5062 

p-value = 

0.5389 

h=1/3  p-value = 

0.5145 

 p-value = 

0.4294 

h=2/3 p-value = 

0.4747 

p-value = 

0.3692 

h=1 p-value = 

0.7703 

p-value = 

0.4095 

p-value = 

0.4668 

p-value =  

0.38 

p-value = 

0.3792 

h=4/3   p-value = 

0.2327 

 p-value = 

0.212 

h=5/3 p-value = 

0.3364 

p-value = 

0.3024 

h=2 p-value = 

0.7065 

p-value = 

0.6287 

p-value = 

0.8827 

p-value = 

0.591 

p-value = 

0.8589 
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5.) Results  

 Table7 and Table8 below show the ratio of RMSFEs of each model to the RMSFEs of 

benchmark AR model. Therefore, if the ratio is less than 1, it means that the model outperforms 

its alternative AR model.  

Consumption 

Table7: The forecast performance of ARDL and AR-MIDAS models  

compared to AR models for Consumption 

Forecast 

Horizon 

CCI SET index SET consumption 

ARDL AR-MIDAS ARDL AR-

MIDAS 

ARDL AR-

MIDAS 

Ratio to AR  

h=0 1.035302 1.000581 1.050737 1.026999 1.039864 1.017324 

h=1/3  1.012685  0.998781  0.99109 

h=2/3  0.980667  0.982854  0.98063 

h=1 0.994901 0.980505 1.064003 1.040143 1.060734 0.980443 

h=4/3  0.895857  0.888637  0.874545 

h=5/3  0.89965  0.939741  0.95846 

h=2 0.936462 0.9259 0.941669 0.933714 0.947237 0.977243 

 

 For the first independent variable; CCI, ARDL models slightly outperform AR models 

when the forecast horizons equal to 1 and 2. Similarly, AR-MIDAS models outperform AR 

models when the forecast horizons are higher than 2 months. In addition, AR-MIDAS also 

outperform ARDL in all forecast horizons. Therefore, CCI has high predictive ability for forecast 

horizon more than 2 months as ARDL and AR-MIDAS outperform AR models which use only 

Consumption itself to explain. It can be viewed that Consumer Confidence Index is the 

consumers’ perception about future and it is more related to their consumption behavior in the 

future period. 

 For SET index, ARDL models outperform AR models only when h=2, while AR-MIDAS 

still perform very well, only when h=0, and h=1 that the model perform worse than AR. Within-

period SET index data actually help improve forecast performance. However, if compare SET 

index with CCI, CCI still perform better most of the time. 
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 For SET consumption index, ARDL models have the same results as for SET index, only 

when h=2 that ARDL outperform AR models. AR-MIDAS models also have similar results, the 

model only lose to AR when h=0. In addition, If compare SET consumption index to the other 

variables, the index is slightly better than the other two for more than half of the forecast 

horizons, h=1/3, 2/3, 1 and 4/3. Therefore, it is clear that SET consumption is more related to 

Consumption components of GDP than other variables. 

Investment 

Table8: The forecast performance of ARDL and AR-MIDAS models  

compared to AR models for Investment 

Forecast 

Horizon 

SET index SET50 index 

ARDL AR-MIDAS ARDL AR-MIDAS 

Ratio to AR 

h=0 1.079558 0.9785 1.079558 0.978759 

h=1/3  0.982022  0.986078 

h=2/3  0.997162  1.004187 

h=1 1.09498 1.008651 1.086476 1.005359 

h=4/3  0.861111  0.857338 

h=5/3  0.862125  0.849108 

h=2 0.99079 0.903861 0.967765 0.892103 

 

 For SET index, ARDL models only slightly outperform AR models when h=2. On the 

other hand, AR-MIDAS outperform AR models in almost all forecast horizons except for h=1. It 

can be seen that SET index can be used to help improve forecast Investment. 

 For SET50 index, ARDL model also outperform AR models only when h=2 just like for 

SET index. However, AR-MIDAS models are a little bit worse than those with SET index. 

Surprisingly, SET index improve forecast performance more than SET50 index. SET index can 

used to represent Investment activities more than SET50 index which concentrate and represent 

only 50 companies listed in the stock exchange. 
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6.) Seasonal Adjusted Data 

 As Consumption and Investment variables which were used in the previous sections both 

exhibit seasonal pattern throughout the samples and so far the data that have been used are non-

seasonal adjusted data only, this part of the paper is focus on whether non-seasonal adjusted 

(NSA) data or seasonal adjusted (SA) data are better in term of forecasting performance. 

 The evaluation method is the same which is by comparison between root mean squared 

forecast errors (RMSFEs). The RMSFEs of SA data are divided by the RMSFEs of NSA data for 

all three models, AR, ARDL and AR-MIDAS models. However, the independent variables for 

ARDL and AR-MIDAS models are only the best performing one of each dependent variable on 

the previous results, so for Consumption, the independent variable is SET consumption index, 

and for Investment, the independent variable is SET index. 

 

Table8: The ratios between seasonal adjusted and  

non-seasonal adjusted root mean square forecast errors. 

Forecast 

Horizon 

Consumption SA Investment SA 

AR 

SET consumption 

AR 

SET index 

ARDL 

AR-

MIDAS ARDL 

AR-

MIDAS 

Ratio to Consumption NSA Ratio to Investment NSA 

h=0  0.569995 0.542519  1.018514 0.999285 

h=1/3   0.593997   1.102713 

h=2/3   0.616645   1.093548 

h=1 0.606078 0.573997 0.619834 1.045229 1.025826 1.082534 

h=4/3   0.613668   1.022859 

h=5/3   0.562745   1.044322 

h=2 0.573492 0.581284 0.530906 0.914399 0.994563 1.030302 

 

 For Consumption, seasonal adjusted data are much more easier to forecast as the root 

mean square forecast errors ratio are about 0.6 for every models and horizons. All of AR, ARDL 

and AR-MIDAS models have much higher predictive power. 
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 For Investment, in contrast to the results for Consumption, seasonal adjusted data do not 

have advantage over non-seasonal adjusted data. Almost all of the models that used the NSA 

data outperform the models that used the SA data. Only the AR model when h=2, the ARDL 

model when h=2 and the AR-MIDAS model when h=0 outperform their alternative models using 

the NSA data. 

 

Figure1: Difference between non-seasonal adjusted data and seasonal adjusted data 

 

 The figure above shows the difference between the non-seasonal adjusted data and the 

seasonal adjusted data of both Consumption and Investment. It can be seen that the difference 

between the NSA and the SA of Investment data is much higher than that of Consumption. It 

means that the Investment data got seasonal adjust in higher manner than the Consumption data. 

However, the results show that the SA data of Investment did not improve forecast performance. 

Therefore, it is inconclusive whether seasonal adjusted data should be used to forecast or not. 
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7.) Conclusion 

 AR-MIDAS models outperform both alternative ARDL models and benchmark AR 

models in almost all forecast horizons for all independent variables. By outperforming ARDL 

models, it can be seen that AR-MIDAS models make great use of real time data. On the other 

hand, time aggregation schemes of ARDL models are not effective enough. 

 Financial data can be used to help forecast macroeconomic variables as it helps improve 

forecast performance. However, the choices of variables are important. These models will 

perform even better if the independent variables are more closely related to dependent variables. 

The best explanatory for Consumption in this paper is the SET consumption index, while the best 

one for Investment is the SET index. 

 Lastly, it is not possible to conclude whether seasonal adjusted data or non-seasonal 

adjusted data are more suitable for forecasting. Seasonal adjusted data of Consumption have a 

big advantage over non-seasonal adjusted data. On the other hand, models with non-seasonal 

adjusted data of Investment perform better. 
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