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Abstract 

This paper presents a simple optimal control model for an energy sector that 

converts fossil fuels into electricity. The goal is to illustrate that the optimal eco-tax level 

on fossil fuel usage is equal to the shadow price of the pollution externality. We develop 

the model, solve the optimization problem, and interpret the results, showing how the 

Pigouvian eco-tax internalizes the negative externality by aligning private costs with 

social costs. 

 

 

1 Introduction 

In the 21st Century, Climate change and environmental sustainability have taken the front 

stage in global issues. A push towards taking action has prompted nations worldwide to 

develop policies such as the Paris Agreement 2015, moving the world economy towards zero 

carbon emissions. The agreement aims to establish a goal for reducing greenhouse gas 

emissions to maintain the global temperature substantially increases to below 2 degrees 

Celsius relative to pre-industrial levels and pursue efforts to limit to 1.5 Celcius above the 

pre-industrial level, recognizing that this would signiEicantly reduce the risks and impacts of 

climate change (United Nations, 2024). To reduce emissions, economists agree that 

implementing a price on emissions through mechanisms like cap and trade and carbon 

taxation is the most effective method for diminishing carbon emissions via market-based 

incentives (Gucler et al., 2023). A carbon tax aims to put a price on carbon emissions, 

providing a clear price signal to producers and consumers about their carbon footprint. The 

additional cost will reduce demand and increase the value proposition for investment in 

clean generation, transmission, and grid-scale energy storage, prompting producers to 

innovate and move towards a production process without producing greenhouse gases 

(Olsen et al., 2018). Consumers will, in turn, be more incentivized to buy environmentally 

sustainable goods. Shadow pricing in the same vein is also a way to predict the cost of 

carbon. emissions, and understanding these concepts can lead to more effective policy 



3  

decisions in reducing GHG emissions. 

A great example of an effective eco-tax is Sweden, with a 30 Year of carbon tax history. 

Sweden possesses one of the highest carbon taxes in the world, initially set at $26 per ton of 

CO2, escalating to $126 per ton of CO2 in 2020. Despite the high rate, Sweden demonstrated 

that it can achieve signiEicant emission reduction and strong economic growth. Between 

1990 and 2019, Sweden's real GDP per capita increased by almost 50 percent while 

decreasing greenhouse gas emissions by 27 percent, demonstrating that environmental 

taxation does not inherently hinder economic progress. (Jonsson et al, 2020). 

The energy sector is deEined by the S&P500’s global industry ClariEication Standard’s 

indexes deEine the energy sector as consisting of 2 industries: “energy equipment and 

services” and “Oil, gas, and consumable fuel”. According to the United States Environmental 

Protection Agency (n.d.), energy generation accounted for 34 percent of Global greenhouse 

gas emissions in 2019, consisting of burning coal, natural gas, and oil for electricity and 

heating. Industrial usage also accounted for 24 percent of Global greenhouse gas emissions, 

primarily from fossil fuel burned on site at energy facilities, as well as emissions from 

chemical, metallurgical, and mineral transformation processes not associated with energy 

consumption and waste management activities. The energy sector, consisting of these two 

industries, is responsible for a combined emission of 68 percent of global emissions. This 

means that if we, as an international community, want to have the highest impact on 

Greenhouse gas emission reduction, we must start using policies such as a carbon tax to 

target and transform the energy sector. 

 

2 Literature review 

The concept of Shadow Price in environmental economics has been mainly explored 

regarding the shadow price of 2 variables. Shadow price of energy, and in terms of emissions 

abatement (Pollutant). The shadow price of a pollutant’s standard deEinition is forgone 

revenue from reducing emissions by one unit (Rodseth, 2023), while the shadow price of 

energy is deEined as the willingness to pay for an additional unit of energy input to contribute 

to production (Khadsemvatani and Gordon, 2013). Therefore, shadow prices are not the 

market price of energy. A carbon tax is a direct monetary charge imposed on fossil fuels based 

on their carbon content or emissions (Zhunussova, 2022). It is one of the most effective 

policies to combat climate change. Pricing the emission of greenhouse gases is a well- 

established approach to internalizing negative externality, shifting the demand-supply 
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equilibrium to a social optimum point (Olsen et al., 2018). Since shadow prices can quantify 

the impact of solutions or policies, they are helpful for communication from modelers to 

decision makers (Schwaeppe et al., 2024). This makes shadow prices and carbon tax a great 

connection and comparison from theory to the real world. The relationship has sparked 

research and papers to expand and assess these variables. 

To understand the relationship between the Shadow price and the Carbon Tax, we must 

Eirst understand the effects of the carbon tax. Carbon Tax is a policy that can affect the market 

price of energy because taxes add to the cost of production, and fuel suppliers will typically 

pass the tax on to consumers in terms of higher prices (IMF F&D, 2019). Empirical Eindings 

from The Clean Energy Bill of 2012-2014, utilizing a natural experiment based on Australia’s 

carbon pricing mechanism (CPM), demonstrate that wholesale electricity costs rise by 22.1% 

to 68.0% throughout interconnected regions after accounting for relevant factors. (Wong & 

Zhang, 2021). Tax policies can be used as an environmental tool to alter energy prices and 

adjust shadow prices relative to the price of energy (Khadsemvatani and Gordon, 2013). 

When the shadow price of energy does not match its market price, private enterprise will 

reallocate energy and other inputs in the production process to maximize proEit (Sheng et al., 

2015). This can create energy inefEiciencies and market failure, and the Carbon tax can be 

used to balance the market price and the shadow price of energy. 

Many papers have found similar results regarding carbon taxes. A paper assessing the 

effects of the unilateral carbon tax on the British power sector from 2013 to 2015 found that 

the carbon tax led to a signiEicant 38.6 MTCO2 reduction, accounting for 60 percent of the 43 

percent emission reduction within those 3 years. Notably, coal-based emissions were 

reduced by 40 percent during that period, and a shift to renewables as a more carbon- 

efEicient generation, such as gas emissions, saw a slight rise (Gucler et al., 2023). This means 

the carbon tax also has the additional effect of encouraging alternative energy sources such 

as renewables by making them more cost-competitive (Shahzad, 2020). Nevertheless, the 

carbon tax’s effectiveness depends on setting an optimum price equal to the shadow price, 

which reElects true social cost. Setting too low fails to incentivize behavioral change (Samuel, 

2025). Therefore, A low level of carbon tax rate cannot fully reveal the true social cost (Ding, 

2022). However, the current carbon tax policies are currently insufEicient. Jain and Kumar 

(2018) reElected that India’s clean energy cess of US$6.5 per ton of coal and US$3.81 per ton 

of CO2 is inadequate to drive emission reduction to meet their emission reduction pledge for 

the Paris Agreement. 
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A carbon price can also restore efEicient resource allocation without needing heavy- 

handed government interference in individual decisions made by Eirms (Mankiw, 2009). 

Sheng et al. (2015) used a non-parametric shadow pricing approach to examine energy 

inefEiciencies in China’s 30 provinces from 1998 to 2011. The paper shows that the shadow 

prices of more than half the provinces are signiEicantly higher than the market price due to 

inefEiciency in energy allocation. Findings calculated that energy input could be decreased 

by 36% without reducing output. Furthermore, the paper suggests that energy efEiciency in 

China stayed stagnant until the signiEicant increase in stricter environmental policies 

implemented in 2006, which improved energy efEiciency, implying that environmental 

regulation can help improve energy efEiciency (Wang & Liang, 2022). The author also said 

that a change in Tax policy can raise the shadow price of energy to match market prices. In 

India, the 56 coal-Eired thermal power plants are estimated to be able to reduce emission 

intensity by 16 to 23 percent if they operate efEiciently (Jain & Kumar, 2018). The carbon tax 

more signiEicantly impacts old and relatively inefEicient Coal plants because they experience 

a more substantial increase in relative marginal cost, reducing their output (Gucler et al., 

2023), so a carbon tax can increase the overall energy generation efEiciency. 

Various other papers have also investigated shadow pricing in other countries using 

different models. Streimikis et al. (2024) assess the cost of sustainable energy use in 

agriculture using shadow pricing and data envelopment analysis as part of the European 

Green Deal. Different shadow pricing methods and assumptions can drastically vary the 

results of shadow price estimation, raising concerns about shadow pricing as a policy tool. 

While the Carbon Tax offers a more stable and predictable emission control mechanism, it 

lacks the sector-speciEic adaptability that shadow pricing provides (Schwerhoff et al., 2022). 

The Eindings show that a one-size-Eits-all carbon tax can be ineffective due to speciEic 

variations in shadow price and abatement cost. 

In addition, many external factors must also be considered before implementing a 

carbon tax. An empirical study on Taiwan’s gasoline market found that under simulation, if a 

carbon tax of US$20 per ton were introduced, prices would increase by approximately 2.11%, 

representing a reduction in CO2 emission of 14 million tons (Chiu et al., 2015). The paper 

illustrated that because Taiwan’s market operates under imperfect competition, an oligopoly, 

carbon tax results in a lower energy price than emission trading, demonstrating the 

importance of market structure in policy decisions. Evidence from research suggests that a 

well-designed carbon tax that aligns market price with shadow prices of today and the social 

value of induced innovation can improve both economic efEiciency and achieve emission 
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reduction (Stiglitz, 2019). Similarly, Nie et al. (2021) analyzed carbon and emission taxes 

under monopolization. They concluded that the carbon tax is more effective than the 

emission tax and emphasized the importance of designing the emission tax mechanism 

under incomplete information. Engstrom and Gars (2015) also highlight how optimal carbon 

taxation must consider macroeconomic factors such as technological change, spacial 

differences, and interaction with other Eiscal policies, since energy optimization models are 

applied to inform decision making and must account for uncertainty as it exists in the real 

world (Schwaeppe et al., 2024). 

Since shadow prices are well deEined in optimization problems (Schwaeppe et al., 

2024), papers mainly incorporate shadow prices into creating numerous models to assess 

the carbon tax optimization. The most prominent is the data envelope analysis. However, 

there hasn’t been a deEinitive best model, and many have undeniable Elaws. Rodseth (2023) 

found that Data Envelopment Analysis overestimates marginal abatement costs because it 

overestimates shadow prices faced by inefEicient units, such as in China. The paper found 

that shadow pricing estimates are signiEicantly higher when accounting for the technical 

relationship between input and emission. The paper suggests that shadow pricing should 

focus more on the input-output relationship rather than simply reducing output. Findings 

indicated that prior economic models have underestimated and call for a reassessment of 

carbon abatement costs. This means that carbon taxes may not accurately reElect the 

marginal abatement cost, especially in sectors with complex production technologies (Guo & 

Prestemon, 2025). Therefore, A novel shadow pricing approach focusing on the dual of the 

restricted proEit function can, for example, be created from a dual formulation of the proEit 

function, which may yield more accurate results of shadow pricing (Rodseth 2023). 

In this paper, we aim to build a simple optimal control model and Eind the optimized 

eco-tax level using the derived proEit function. In section 3, we outline key variables and 

parameters as well as the objective function. In section 4, we set up a Hamiltonian equation 

and, using Pontryagin’s maximum principle, we solve for the marginal beneEit of fossil fuel 

use (ProEit Function). In section 5, using the derived proEit function, we can interpret the 

shadow prices and quantify how the eco-tax should be set. Afterward, in section 6, we will 

conduct a sensitivity test using the model to test the key parameters’ effects on pollution 

produced, fossil fuel use, and eco-tax. The Einding will give insightful theoretical evidence on 

eco-tax calibration to minimize social damage from pollution. 
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3 Methodology 

In energy economics, a common concern is how to account for the negative externalities 

of fossil fuel usage, such as carbon emissions or other forms of pollution. A standard policy 

approach is to impose an eco-tax (also known as a Pigouvian tax) that forces producers of 

fossil fuels (or electricity generated from fossil fuels) to pay for the damages caused by their 

emissions. One key insight from the theory of externalities is that this eco-tax rate should be 

set to the marginal social damage of emissions. 

A Simple optimal control model can be used to Eind the “marginal social damage” 

corresponding to pollution's shadow price. Below, we set up a simple inEinite-horizon model 

of a social planner who chooses the rate of fossil fuel usage to generate electricity, considering 

both the beneEits of electricity production and the environmental damages from pollution. 

We then show rigorously that, in equilibrium, the optimal tax is set equal to the co-state 

(shadow price) of pollution times the emission intensity of fossil fuel usage. 

3.1 Model Setup (Variables and parameters) 

x(t): The control variable, representing the rate at which the economy uses fossil fuels 

at time t. Burning these fuels produces electricity but also causes pollution. 

F(t): A state variable for the stock of fossil fuels (if we assume a depletable resource) 

at time t. 

S(t): A state variable for the stock of pollution (e.g., CO2 in the atmosphere) at time t. 

 
π(x): The benefit function (or surplus) from generating electricity using x(t) units of 

fossil fuel. Assume π′(x) > 0, π′′(x) < 0. 

ϕ(S): The damage function from the pollution stock S(t). Assume ϕ′(S) > 0, ϕ′′(S) > 0 

to capture that more pollution increases damages at an increasing rate. 

ρ > 0: The discount rate indicates society’s preference for present and future beneEits. 

 
α ≥ 0: The emission intensity parameter, indicating how many units of pollution are 

created per unit of fossil fuel used. 

σ ≥ 0: The natural decay rate of pollution, accounting for processes that remove or 

sequester pollution over time. 
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F0 > 0: The initial stock of fossil fuels. 

 
S0 ≥ 0: The initial stock of pollution. 

 
 

3.2 Dynamics 

We specify the following evolution (differential equations) for the two state variables: 

 

F˙(t) = −x(t), F(0) = F0, (1) 

S˙(t) = αx(t) − σ S(t), S(0) = S0. (2) 

Interpretation: 

Each unit of x(t) directly depletes the fossil fuel stock F(t) at the same rate, hence F˙(t) 

= −x(t). 

 
Each unit of x(t) emits intensity α units of pollution, but the pollution stock S(t) decays 

(or is absorbed) at rate σ, hence S˙(t) = αx(t) − σS(t). 

 

3.3 Objective function 

A social planner wishes to maximize the net present value of beneEits from electricity 

generation, minus the disutility (damages) from the resulting pollution: 

 
(3) 

 

4 Solving the model: Pontryagin’s maximum principle 

4.1 The current-value Hamiltonian 

To solve this inEinite-horizon problem, we use the Pontryagin Maximum Principle (PMP). 

We deEine two costate variables: 

 
λF(t) for the fossil fuel stock F(t), 

λS(t)  for the pollution stock S(t). 
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These shadow prices represent the marginal value (to the objective function) of having one 

more unit of F or S, respectively, at time t. The objective function is a variable you want to 

maximise or minimize, such as proEit or utility. This means λF(t) can represent when saving 

one unit of fossil fuel stock (Increasing one unit of fossil fuel stock), how much proEit changes, 

assuming you want to maximise proEit. 

 
The current-value Hamiltonian is: 

 

instantaneous payoff effect on F effect on S 
 

 

4.2 First-order conditions (FOCs) 

1. Optimality condition for x(t). Differentiate H with respect to x: 

. 

Thus, the condition for an interior optimum is: 

 
π′(x(t)) = λF(t) − αλS(t). (5) 

 
This states that the marginal beneCit of fossil fuel usage, π′(x), must equal the net shadow cost 

of fossil fuel use. That net cost has two components: 

λF(t): the scarcity value (opportunity cost) of using up one more unit of F(t). 

 
−αλS(t): the pollution cost, which enters with a negative sign here because αλS(t) is 

marginal external damage for each additional x(t), and thus reduces the net social 

payoff. 

 
2. Costate equations. The costate equations in current value form are: 

 (since ∂H/∂F = 0), (6) 

. (7) 

To see (7) more clearly: 
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, 

derivative w.r.t. S in payoff 

 
so 

λ˙
S(t) = ρλS(t) + ϕ′(S(t)) − σ λS(t) = (ρ + σ)λS(t) + ϕ′(S(t)). 

 
The costate equations describe how the shadow price of state variables changes over time 

in an optimum extraction problem. ρλF(t) represents the Discounting effect since society 

values future fossil fuel availability less than in the present. At the same time, the 

Hamiltonian differential captures how state variable changes can affect the objective 

function. 

3. Transversality conditions. For an inEinite-horizon problem with well-behaved solutions, 

we typically have 

 
lim e−ρt λF(t)F(t) = 0, lim e−ρt λS(t)S(t) = 0. t→∞ t→∞ 

 
These ensure no inEinite-value terminal stocks. 

 

 

5 Interpretation of the shadow prices and the eco-tax 

In the social planner’s solution, the Eirst-order condition (5), 

 
π′(x(t)) = λF(t) − αλS(t), 

 
balances marginal beneEit and marginal social cost. Now, suppose that we want to see how 

this solution can be decentralized via a market mechanism. 

 

 Decomposing λF(t) and λS(t): private vs. external costs 

Scarcity rent (private cost): λF(t) is the shadow price of depleting one more unit of 

the fossil fuel stock. If the fossil fuel resource is privately owned (or if there is a well- 

functioning market for the resource), a proEit-maximizing extractor would already 

incorporate λF(t) into its decisions. In effect, λF(t) is an internal cost (the so-called 

Hotelling rent) that the owner of the resource will charge or at least recognize in an 

efEicient resource market. 



11  

Pollution shadow price (external cost): λS(t) is the shadow price associated with the 

pollution stock S(t). This is an external cost: without environmental regulation, 

individual Eirms do not pay for the damage caused by increasing S(t). 

Thus, in a well-functioning market for the resource itself, private agents would face a 

marginal cost of λF(t) (reElecting scarcity). However, they would not face the cost αλS(t), which 

represents the social cost of the pollution externality. 

 

 Why the Pigouvian tax is αλS(t) 

To ensure that private decision-makers (e.g. electricity producers) also take pollution 

damages into account, a regulator can impose an eco-tax τ(t) per unit of x(t). Under such a 

tax, a competitive Eirm sees the following private marginal condition: 

 
π′(x(t)) = (price of fossil fuel resource) + (tax). 

λF(t) if resource is privately owned 
 

 

The equation represents the Economy’s marginal proEit as equal to the beneEit from burning 

a unit of fossil fuel, quantiEied monetarily by the price of fossil fuel resource and the beneEit 

from the tax imposed by a regulator to internalize social damage in the private sector. 

 
If the resource market is perfectly competitive and fully internalizes λF(t) as the scarcity cost, 

then the only missing piece is the pollution externality. Therefore, for the socially optimal 

choice of x(t), we must have 

 
π′(x(t)) = λF(t) + τ(t). 

 
Comparing this to the social planner’s FOC, 

 
π′(x(t)) = λF(t) − αλS(t), 

 

we require 
 

 
Hence 

 
λF(t) + τ(t) = λF(t) − αλS(t). 

 

 
τ(t) = −αλS(t). (8) 
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The negative sign in front of αλS(t) in the planner’s FOC (equation (5)) reElects that pollution 

is a cost and that a tax must be collected from producers and will decrease proCitability of 

private producers. When we bring that term to the left-hand side for the private agent, it adds 

to the private agent’s cost in the form of a positive tax. Thus, the per-unit tax τ(t) that 

internalizes the externality is precisely αλS(t) (with the negative sign accounted for in the 

rearrangement).1 

This proves that the Pigouvian tax must be set to the marginal external damage: 

 
Marginal External Damage = αλS(t). 

 
Since λS(t) is the social shadow price of pollution stock, αλS(t) is the additional social cost 

per unit of x(t), i.e. the social damage from the extra pollution caused by burning one unit of 

fossil fuel. 

 

 Interpretation 

Scarcity rent λF(t) is internal to private agents if property rights over the resource are 

well-deEined. In other words, if a Eirm must pay λF(t) per unit of fossil fuel to the 

resource owner, it already takes scarcity into account. 

Pollution cost αλS(t) is not internal to private agents unless an explicit mechanism 

forces it to be. A Pigouvian tax of exactly τ(t) = αλS(t) per unit of fuel ensures that the 

private user bears the social cost of its pollution, thereby “internalizing” the externality. 

Conclusion: The optimal tax rate τ(t) is exactly the product of the emission intensity α 

and the pollution shadow price λS(t). If α = 1, then τ(t) = λS(t). 
 

 

6 Simulations 

In this section, we numerically simulate the dynamics of the system to illustrate: 

 
1. How the state variables F(t) and S(t) evolve over time when the optimal control x(t) is 

used. 

 

1 If one prefers a more direct reading: in the planner’s FOC, the net social cost is λF−αλS. Rearranging to see 

what extra cost a private agent must face to replicate that FOC, the wedge is indeed αλS. 
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2. How the shadow price λS(t) (and thus the optimal eco-tax τ(t) = αλS(t)) evolves. 
 

3. How sensitive the outcomes (especially the eco-tax path) are to changes in key 

parameters α, σ, and ρ. 

 

6.1 Simulation parameters 

To run a concrete simulation, we must choose speciEic functional forms and parameter values. 

For simplicity, let us pick: 

Linear-quadratic beneEits/damages for easier interpretation: 

 
Quadratic pollution damage:2 

 
State equations: 

 
F˙(t) = −x(t), S˙(t) = αx(t) − σ S(t). 

 
Costate equations (current value): 

 

λ˙
F(t) = ρλF(t), 

λ˙
S(t) = (ρ + σ)λS(t) + dS(t). 

 
 
 

From the FOC π′(x) = a − bx = λF − αλS, we solve for 

 

. 

Let us specify some numerical values for a baseline scenario: 

a = 10, b = 2, 
 

 

2 One could easily change to a different damage function, e.g. ϕ(S) = dSγ, as long as it is increasing and convex 

in S. 
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d = 0.05, α = 0.2, 

ρ = 0.03, σ = 0.02, 

F0 = 100, S0 = 10. 

We choose a moderate discount rate ρ = 3%, a small decay rate σ = 2%, and an emission 

intensity α = 0.2. The resource is initially quite large (F0 = 100), and the initial pollution stock 

is S0 = 10. 

 

6.2 Simulation results for different emission intensity levels 
 

Figure 1: Illustrative simulation results for the baseline parameters. 

 
Figure 1 shows how the resource stock F(t), the pollution stock S(t), the usage rate x(t), 

and the eco-tax τ(t) evolve over time for different levels of emission intensity α = 0.1,0.2, and 

0.3. The main insights from these results are: 

 
Resource stock F(t) (U-shaped): Initially, the resource stock declines as the planner 

extracts fossil fuel. However, as the usage rate slows down over time, the stock 

stabilizes and even starts increasing again, forming a U-shaped curve. When α is higher 

(green curve), the resource is extracted more aggressively at Eirst, leading to a steeper 

decline, but later recovers more strongly. In contrast, lower α (blue curve) results in a 

more gradual decline and a gentler recovery. 
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Pollution stock S(t) (inverted U-shaped): Pollution initially increases as fossil fuels are 

burned. However, as extraction slows down and natural decay removes pollution, the 

stock of pollution starts decreasing, creating an inverted U-shape. Higher α causes 

pollution to rise more sharply at Eirst because each unit of fuel burned produces more 

emissions. However, the stronger reduction in usage later on means that pollution also 

decreases more rapidly toward the end of the time horizon. 

Usage rate x(t) (gradual decline): The planner starts with high fuel usage but reduces 

it over time to manage both resource depletion and pollution costs. This creates a 

smooth, downward-sloping curve. When α is larger, the planner initially extracts more 

but cuts back more aggressively later. With lower α, the reduction in fuel use happens 

more gradually. 

Eco-tax τ(t) (increasing over time): The tax on emissions starts low but rises as 

pollution costs become more signiEicant. Since the eco-tax is proportional to pollution 

damages, it increases more rapidly when α is higher. The tax follows an upward-curving 

path, meaning that the cost of emitting rises more sharply as time progresses. 

Effect of different α values. Comparing the three cases (α = 0.1,0.2,0.3), we observe that 

higher α: 

 
Leads to a steeper initial drop in F(t) followed by a stronger rebound. 

Produces a higher peak in S(t) before pollution starts to decline. 

Causes higher initial fuel usage but also a more rapid reduction in extraction later. 

Results in a higher and faster-growing eco-tax as pollution damages increase. 

Overall, increasing the emission intensity α makes short-term resource extraction more 

aggressive, but this forces a stronger cutback in usage later. Pollution rises more sharply at 

Eirst but then falls more quickly, and the eco-tax becomes steeper to discourage further 

emissions. 

6.3 Sensitivity analyses 

We now explore how changing two key parameters—the pollution decay rate σ, and the 

discount rate ρ—affects the behavior of our model. Figures 2 and 3 show the trajectories of 
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the resource stock F(t), the pollution stock S(t), the usage rate x(t), and the eco-tax τ(t) when 

we vary each parameter around its baseline value. 

Varying the pollution decay rate σ 
 

Figure 2: Sensitivity analysis: changes in σ. 

 
Figure 2 shows how the system behaves when σ = 0.01,0.02, and 0.04. The main 

observations are: 

Resource stock F(t): A higher σ means pollution dissipates faster, so the planner can 

allow slightly higher usage without letting pollution get too large. As a result, the 

resource stock tends to dip more at Eirst but also rebounds strongly, ending at a higher 

level. 

Pollution stock S(t): With faster decay (larger σ), the pollution peak is lower and 

occurs earlier. Over time, S(t) falls more quickly, so we see a gentler inverted U-shape 

that ends at a smaller Einal level. 
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Usage rate x(t): Because pollution is less of a threat when it decays faster, the planner 

can afford to use more fossil fuel early on. Hence, the curve for a higher σ starts out 

above the others, but it still declines over time as the resource eventually becomes 

costly or the remaining pollution cost accumulates. 

Eco-tax τ(t): When σ is larger, pollution never builds up as much, so the shadow price 

of pollution is lower. Consequently, the tax grows more slowly and stays below the 

paths for lower σ. 

 
In summary, a larger pollution decay rate σ reduces the overall pollution burden, allowing 

more fuel usage early on and lowering the eco-tax path. 

Varying the discount rate ρ 

 

Figure 3: Sensitivity analysis: changes in ρ. 

 
Figure 3 illustrates what happens when we change ρ. We see: 
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Resource stock F(t): With a higher discount rate, the planner places more weight on 

immediate beneEits, so extraction is front-loaded. This leads to a deeper initial decline 

in F(t) but also a more pronounced rebound later, again giving the curve a U-shape. 

Pollution stock S(t): The quicker extraction early on raises pollution sooner, resulting 

in a higher peak. However, once the resource use drops off, pollution decays to a lower 

Einal level for higher ρ. 

Usage rate x(t): A larger ρ pushes the planner to exploit the resource earlier, so the 

usage curve starts out higher. Over time, x(t) falls more sharply once immediate gains 

are exhausted and pollution costs grow. 

Eco-tax τ(t): With heavier discounting of future damages, the tax remains relatively 

low at Eirst. Even though it rises over time, it does so from a smaller base compared to 

lower discount rates. Ultimately, the higher ρ path may still end up lower, reElecting the 

planner’s weaker concern for future pollution. 

Thus, increasing ρ speeds up early extraction, drives an earlier and higher pollution peak, 

and delays a signiEicant rise in the eco-tax. 

 
 Overall insights 

Across all three sensitivity analyses, the shapes of F(t) (U-shaped), S(t) (inverted Ushaped), 

x(t) (downward-sloping), and τ(t) (upward-sloping) remain broadly consistent. What 

changes is how steeply each curve rises or falls, and where it ends up by the Einal time. In 

particular: 

α (emission intensity) mainly affects how much pollution is created per unit of fossil 

fuel, making the planner either more or less aggressive in managing usage and tax. 

σ (pollution decay) inEluences how quickly pollution dissipates, letting the planner 

adjust extraction and taxes based on how fast the environment recovers. 

ρ (discount rate) determines how much the planner values present vs. future costs, 

leading to different timing for extraction, pollution peaks, and tax growth. 
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Overall, these results conEirm that higher α raises pollution costs, higher σ reduces them, 

and higher ρ favors earlier resource usage. The eco-tax and usage paths adjust in each 

scenario to balance the trade-offs between current beneEits and future damages. 

These simulation results conEirm our theoretical predictions: 

Eco-tax equals αλS(t): In every simulation, the per-unit eco-tax is exactly the product 

of the emission intensity α and the shadow price of pollution λS(t). This conEirms that 

the tax internalizes the external cost of pollution. 

Resource usage and pollution dynamics: Over time, the usage rate x(t) declines. This 

happens both because the cost of depleting the resource (measured by the scarcity rent 

λF(t)) increases and because the external pollution cost (reElected in λS(t)) rises when 

pollution accumulates. As a result, the pollution stock S(t) initially rises, reaches a peak, 

and then falls. 

Higher emission intensity α: When α increases, each unit of fossil fuel causes more 

pollution. The simulations show that higher α leads to a higher eco-tax path, a sharper 

initial extraction (or more front-loaded usage), and then a more aggressive cutback in 

x(t). This results in a deeper dip and stronger rebound in F(t) and a steeper, more 

peaked S(t) proEile. 

Faster pollution decay σ: With a larger σ, pollution dissipates faster. The simulations 

indicate that a faster decay rate keeps the pollution stock lower and slows the rise of 

λS(t), which in turn keeps the eco-tax lower over time. 

Higher discount rate ρ: A higher ρ means that the planner puts more weight on 

current beneEits relative to future costs. This leads to more front-loaded resource 

extraction and a slower initial increase in the shadow prices. As a consequence, while 

pollution may eventually become signiEicant, the initial eco-tax is lower because future 

damages are discounted. 

Overall, the simulations illustrate how the model’s optimal control solution produces 

speciEic time paths for fossil fuel usage, pollution accumulation, and the eco-tax. 
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7 Conclusion 

In this paper, we developed and analyzed an optimal control model of eco-taxation in the 

energy sector. The main Eindings of our study can be summarized as follows: 

Optimal eco-tax equals marginal external damage: We showed that the optimal eco- 

tax that a social planner should impose is given by τ(t) = αλS(t), where α is the emission 

intensity and λS(t) is the shadow price of pollution. This result conEirms the classic 

Pigouvian taxation principle, which states that the tax should equal the marginal 

external cost of pollution (Carlton & Loury, 1986). 

Dynamics of resource usage and pollution: Our simulation results reveal that the 

resource stock F(t) exhibits a U-shaped pattern over time, while the pollution stock S(t) 

follows an inverted U-shape. The usage rate x(t) declines in a smooth, downward- 

concave manner, and the eco-tax τ(t) increases along an upward-convex path. These 

patterns indicate that higher emission intensity leads to a more aggressive early 

extraction followed by a stronger cutback, which helps to curb long-term pollution. 

Sensitivity to key parameters: The model demonstrates how changes in the key 

parameters affect the system: 

– A higher α increases the marginal pollution cost, resulting in a steeper eco-tax and 

a more front-loaded extraction strategy. 

– A higher pollution decay rate σ reduces the buildup of pollution, thereby lowering 

the eco-tax and allowing for relatively higher early resource usage. 

– A higher discount rate ρ places greater emphasis on current beneEits, leading to 

earlier extraction and a slower initial rise in the eco-tax. 

 
Policy implications: The main policy takeaway is that a well-calibrated eco-tax, set equal 

to the marginal external damage αλS(t), can internalize the pollution externality (Ligthart, 

1998). By doing so, private Eirms will face the true social cost of fossil fuel use, which 

encourages more sustainable production and consumption decisions. Policymakers must 

carefully consider the values of emission intensity, pollution decay, and discount rates when 

designing such taxes to achieve the desired balance between economic beneEits and 

environmental protection. 
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Limitations: While our model provides clear insights into the optimal design of ecotaxes, 

it is based on a highly simpliEied framework. For instance, the model assumes a single fossil 

fuel source, deterministic dynamics, and a speciEic functional form for beneEits and damages. 

These simpliEications mean that the model does not capture all real-world complexities, such 

as technological changes, multi-sector interactions, or uncertainty in environmental 

damages. 

Directions for future research: Future studies could extend this work in several 

directions to enhance realism and policy relevance. For example, one could incorporate: 

Stochastic elements to account for uncertainty in pollution dynamics or market 

conditions improving model’s robusness. Stochastic integrated assessment models 

(SIAMs) have showed promise in addressing the unpredictable nature of climatic 

tipping points and policy responses (Lemoine & Traeger, 2014). 

Multiple energy sources and modeling of substitution effects between fossil fuels and 

renewable energy technologies. Considering these substitute possibilities is essential 

for comprehending the energy system’s responsiveness to policy change and 

technology advancement (e.g., Gillingham and Sweeney, 2010). 

More realistic damage functions or the integration of climate change dynamics 

including tipping points, feedback loops and regional variation in climate impact. 

Recent critiques have highlighted the shortcomings of traditional damage functions 

and the necessity for models that more accurately represent empirical and physical 

facts. (e.g., Dietz and Stern, 2015; Weitzman, 2009) 

Behavioral aspects and heterogeneous agents to capture a wider range of decision- 

making processes, especially in contexts where bounded rationality, fairness concerns 

and asymetrical information are pivotal (e.g., Gennaioli and Shleifer, 2018). Modeling 

heterogeneity facilitates the examination of distributional effects and policy equality, 

which are widely acknowledged as fundamental to the formulation of climate policy. 

Such extensions would help reEine the model’s policy recommendations and provide a 

deeper understanding of how optimal eco-taxation can be implemented in practice. 

Overall, this study contributes to the literature by rigorously demonstrating that the 

optimal eco-tax, designed to internalize externalities in the energy sector, is determined by 

the marginal external damage. The insights gained here can serve as a helpful benchmark for 
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policymakers aiming to design environmentally effective and economically efEicient tax 

policies. 
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9 Python Code: 

import numpy as np 
from scipy.integrate import solve_ivp 
import matplotlib.pyplot as plt 

 
##################################### 
# DeEine a function to solve the ODEs 
##################################### 
def solve_model(a, b, d, alpha, rho, sigma, F0, S0, 

lambdaF0_guess=0.0, 
lambdaS0_guess=0.0, 
T=50, N=200): 

""" 
Solves the ODE system for given parameter values. 
Integration stops when F(t) or S(t) reaches 0. 
Returns t_vals, F_vals, S_vals, x_vals, tau_vals. 
""" 
# ODE system 
def odes(t, y): 

F, S, lamF, lamS = y 
 

# --- FOC: subtract alpha*lamS --- 
x = (a - lamF - alpha * lamS) / b 

dF_dt = -x 
dS_dt = alpha * x - sigma * S 
dLamF_dt = rho * lamF 
dLamS_dt = (rho + sigma) * lamS + d * S 
return [dF_dt, dS_dt, dLamF_dt, dLamS_dt] 

 
# Event function to stop integration when F(t) reaches zero 
def event_F_zero(t, y): 

return y[0] # F(t) 
event_F_zero.terminal = True 
event_F_zero.direction = -1 # Trigger only when F is decreasing through 0 

# Event function to stop integration when S(t) reaches zero 

http://www.imf.org/en/Publications/staff-climate-
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def event_S_zero(t, y): 
return y[1] # S(t) 

event_S_zero.terminal = True 
event_S_zero.direction = -1 # Trigger only when S is decreasing through 0 

 
# Time grid 
t_span = (0, T) 
t_eval = np.linspace(0, T, N) 

# Initial condition vector 
y0 = [F0, S0, lambdaF0_guess, lambdaS0_guess] 

# Solve ODE with event detection 
sol = solve_ivp( 

odes, t_span, y0, 
t_eval=t_eval, 
events=[event_F_zero, event_S_zero], 
dense_output=True 

) 

t_vals = sol.t 
F_vals = sol.y[0] 
S_vals = sol.y[1] 
lamF_vals = sol.y[2] 
lamS_vals = sol.y[3] 

 
# Compute control and tax variables 
x_vals = (a - lamF_vals - alpha * lamS_vals) / b 
tau_vals = alpha * lamS_vals 

return t_vals, F_vals, S_vals, x_vals, tau_vals 

##################################### 
# Baseline parameter values 
##################################### 
a = 10.0 
b = 2.0 
d = 0.05 
# Baseline parameters for sensitivity analyses 
alpha_baseline = 0.2 
rho_baseline = 0.03 
sigma_baseline = 0.02 
F0 = 100.0 
S0 = 10.0 

##################################### 



28  

# Sensitivity Analysis: Emission Intensity (alpha) 
##################################### 
alpha_list = [0.1, 0.2, 0.3] 
results_alpha = {} 

 
for alpha in alpha_list: 

t, Fv, Sv, xv, tauv = solve_model(a, b, d, alpha, rho_baseline, sigma_baseline, F0, S0) 
results_alpha[alpha] = (t, Fv, Sv, xv, tauv) 

plt.Eigure(Eigsize=(12, 10)) 

# Subplot 1: F(t) 
plt.subplot(2,2,1) 
for alpha in alpha_list: 

t, Fv, _, _, _ = results_alpha[alpha] 
plt.plot(t, Fv, label=f'$α$ = {alpha}') 

plt.xlabel('Time') 
plt.ylabel('$F(t)$') 
plt.legend() 
plt.grid(True) 

 
# Subplot 2: S(t) 
plt.subplot(2,2,2) 
for alpha in alpha_list: 

t, _, Sv, _, _ = results_alpha[alpha] 
plt.plot(t, Sv, label=f'$α$ = {alpha}') 

plt.xlabel('Time') 
plt.ylabel('$S(t)$') 
plt.legend() 
plt.grid(True) 

 
# Subplot 3: x(t) 
plt.subplot(2,2,3) 
for alpha in alpha_list: 

t, _, _, xv, _ = results_alpha[alpha] 
plt.plot(t, xv, label=f'$α$ = {alpha}') 

plt.xlabel('Time') 
plt.ylabel('$x(t)$') 
plt.legend() 
plt.grid(True) 

 
# Subplot 4: τ(t) 
plt.subplot(2,2,4) 
for alpha in alpha_list: 

t, _, _, _, tauv = results_alpha[alpha] 
plt.plot(t, tauv, label=f'$α$ = {alpha}') 
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plt.xlabel('Time') 
plt.ylabel('$τ(t)$') 
plt.legend() 
plt.grid(True) 

 
plt.tight_layout(rect=[0, 0.03, 1, 0.95]) 
plt.show() 

 
##################################### 
# Sensitivity Analysis: Pollution Decay Rate (sigma) 
##################################### 
sigma_list = [0.01, 0.02, 0.04] 
results_sigma = {} 

for sigma in sigma_list: 
t, Fv, Sv, xv, tauv = solve_model(a, b, d, alpha_baseline, rho_baseline, sigma, F0, S0) 
results_sigma[sigma] = (t, Fv, Sv, xv, tauv) 

 
plt.Eigure(Eigsize=(12, 10)) 

# Subplot 1: F(t) 
plt.subplot(2,2,1) 
for sigma in sigma_list: 

t, Fv, _, _, _ = results_sigma[sigma] 
plt.plot(t, Fv, label=f'$σ$ = {sigma}') 

plt.xlabel('Time') 
plt.ylabel('$F(t)$') 
plt.legend() 
plt.grid(True) 

 
# Subplot 2: S(t) 
plt.subplot(2,2,2) 
for sigma in sigma_list: 

t, _, Sv, _, _ = results_sigma[sigma] 
plt.plot(t, Sv, label=f'$σ$ = {sigma}') 

plt.xlabel('Time') 
plt.ylabel('$S(t)$') 
plt.legend() 
plt.grid(True) 

# Subplot 3: x(t) 
plt.subplot(2,2,3) 
for sigma in sigma_list: 

t, _, _, xv, _ = results_sigma[sigma] 
plt.plot(t, xv, label=f'$σ$ = {sigma}') 

plt.xlabel('Time') 
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plt.ylabel('$x(t)$') 
plt.legend() 
plt.grid(True) 

# Subplot 4: τ(t) 
plt.subplot(2,2,4) 
for sigma in sigma_list: 

t, _, _, _, tauv = results_sigma[sigma] 
plt.plot(t, tauv, label=f'$σ$ = {sigma}') 

plt.xlabel('Time') 
plt.ylabel('$τ(t)$') 
plt.legend() 
plt.grid(True) 

plt.tight_layout(rect=[0, 0.03, 1, 0.95]) 
plt.show() 

 
##################################### 
# Sensitivity Analysis: Discount Rate (rho) 
##################################### 
rho_list = [0.02, 0.03, 0.05] 
results_rho = {} 

 
for rho in rho_list: 

t, Fv, Sv, xv, tauv = solve_model(a, b, d, alpha_baseline, rho, sigma_baseline, F0, S0) 
results_rho[rho] = (t, Fv, Sv, xv, tauv) 

plt.Eigure(Eigsize=(12, 10)) 
 

# Subplot 1: F(t) 
plt.subplot(2,2,1) 
for rho in rho_list: 

t, Fv, _, _, _ = results_rho[rho] 
plt.plot(t, Fv, label=f'$ρ$ = {rho}') 

plt.xlabel('Time') 
plt.ylabel('$F(t)$') 
plt.legend() 
plt.grid(True) 

# Subplot 2: S(t) 
plt.subplot(2,2,2) 
for rho in rho_list: 

t, _, Sv, _, _ = results_rho[rho] 
plt.plot(t, Sv, label=f'$ρ$ = {rho}') 

plt.xlabel('Time') 
plt.ylabel('$S(t)$') 
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plt.legend() 
plt.grid(True) 

# Subplot 3: x(t) 
plt.subplot(2,2,3) 
for rho in rho_list: 

t, _, _, xv, _ = results_rho[rho] 
plt.plot(t, xv, label=f'$ρ$ = {rho}') 

plt.xlabel('Time') 
plt.ylabel('$x(t)$') 
plt.legend() 
plt.grid(True) 

 
# Subplot 4: τ(t) 
plt.subplot(2,2,4) 
for rho in rho_list: 

t, _, _, _, tauv = results_rho[rho] 
plt.plot(t, tauv, label=f'$ρ$ = {rho}') 

plt.xlabel('Time') 
plt.ylabel('$τ(t)$') 
plt.legend() 
plt.grid(True) 

plt.tight_layout(rect=[0, 0.03, 1, 0.95]) 
plt.show 


