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Introduction 

The energy mix in electricity generation refers to the combination of various energy sources 

used to produce electricity within a region or country. Achieving an optimal energy mix is vital for 

supporting economic development, as electricity underpins modern production processes and 

serves as a foundation for daily life. Furthermore, a well-balanced energy mix is crucial for 

national energy security by reducing dependence on specific energy sources, lowering supply risks, 

and mitigating blackouts. The determination of an optimal energy mix of a country depends on 

multiple factors, including the current stage of technological advancements, economic conditions, 

geographical characteristics, natural resource endowments, and environmental objectives. 

Therefore, it is in our best interest to fully utilize the natural resource endowments to minimize the 

cost of electricity production. At the same time, environmental goals have become increasingly 

significant, as concerns over climate change, air pollution, and exploitation of natural resources 

have placed greater pressure on the energy sector to reduce greenhouse gas emissions and 

transition toward cleaner sources of electricity.  Pursuing the lowest-cost energy mix does not 

always align with environmental objectives, as fossil fuel-based technologies are often more 

economical but contribute more to environmental damage. Furthermore, variable renewable 

energy sources such as photovoltaic systems and wind turbines also pose significant challenges 

for grid integration. By using the data from Germany's electrical system, this study seeks to address 

the following research question: What is the optimal electricity generation mix that minimizes both 

production costs and CO₂ emissions while adhering to technical and operational constraints? 

The structure of this paper is organized as follows. The first section presents a literature 

review, which is divided into four parts: electricity generation cost structures, CO₂ emissions 

associated with different technologies, technical and feasibility constraints affecting system 

design, and multi-objective optimization algorithms used in energy mix optimization problems. 

The second section outlines the methodology, detailing the system configuration and the 

optimization techniques used to identify the optimal generation mix. The third section presents the 

results of optimization, highlighting the trade-offs between cost and emissions. Finally, the fourth 

section provides a discussion of the findings, with particular emphasis on their implications and 

adaptability within the context of Thailand’s energy sector. 



1. Literature Review 

The determination of energy mix in electricity generation is a critical challenge in energy 

planning, as policymakers seek to keep balances between the economic, environmental, social, and 

technical feasibility goals. Multi-objective optimization (MOO) methods have been widely applied 

to address this challenge by presenting conflicts and tradeoffs between contradicting objectives. 

This review explores the key objectives used in electricity generation planning literature and multi-

objective optimization methods. 

Metrics used for cost of electricity generation 

Cost optimization is a fundamental objective in energy mix planning, as it directly 

influences the economic feasibility of electricity generation and the affordability of power for 

consumers. The Levelized Cost of Electricity (LCOE) is a commonly used indicator that measures 

the average cost to produce one unit of electricity (Euro/kWh). The methodology involves 

calculating the present value of capital investment, fuel costs, and operation and maintenance 

(O&M) expenses over the expected lifetime of the power plant (IRENA, 2013; Ramirez-Meyers 

et al., 2021; Short, Packey, & Holt, 1995). While LCOE is a comprehensive tool that facilitates 

cross-comparison between different electricity generation technologies, it fails to capture key 

economic and operational differences between dispatchable and intermittent generation sources. 

As LCOE treats all electricity from all sources as homogenous products, the metric ignores the 

variation in cost due to the disparities of generation profile between dispatchable (e.g., natural gas, 

coal, and nuclear) and intermittent (e.g., wind and solar) technologies (Joskow, 2011). To 

overcome the shortcomings, system LCOE has been introduced as an alternative metric. The 

system LCOE is defined as the sum of LCOE and the integration cost, an additional expense 

incurred when incorporating wind and solar (Grubb, 1991; Sims et al., 2011). The integration cost 

can be categorized into three primary components: balancing costs, grid infrastructure costs, and 

adequacy costs. Balancing costs refer to the expenses incurred to maintain intraday stability of 

power supply due to the variability of renewable energy (Hirth, Ueckerdt and Edenhofer, 2015; 

Holttinen et al., 2012; IEA, 2011). Grid costs cover the transmission and distribution investment 

to accommodate when variable renewable energy (VRE) supply is geographically dispersed from 

load centers (ENTSO-E, 2018; IEA, 2011). Adequacy costs refer to expenses associated with 

ensuring sufficient generation capacity to meet peak electricity demand (Holttinen et al., 2011; 



IEA, 2011; IEA, 2017). Ueckerdt et al. (2013) propose a methodology to calculate integration costs 

by using benchmark technology. The concept is that a benchmark technology would generate the 

same amount of electricity renewable technologies could generate without the challenges of 

variability and uncertainty, thereby avoiding any integration costs. By comparing the system costs 

with and without VRE, it becomes possible to isolate and quantify the additional expenses 

specifically caused by integrating VRE into the power system. 

Table 1.  Metrics for cost objectives 

Metric Formula Variables Description 

LCOE 𝐿𝐶𝑂𝐸 =  
∑(𝐶𝑡 + 𝑂𝑡 + 𝐹𝑡)/(1 + 𝑟)𝑡

∑ 𝐸𝑡 /(1 + 𝑟)𝑡
 - 𝐶𝑡 = Capital cost in 

year t  

- 𝑂𝑡 = Operation & 

maintenance cost in year 

t 

- 𝐹𝑡 = Fuel cost in year t 

- 𝐸𝑡 = Electricity 

generated in year t 

- 𝑟 = Discount rate 

- 𝑡 = Year of analysis 

LCOE measures the 

cost per unit of 

electricity generated 

over a power plant's 

lifetime. 

System 

LCOE 

𝑠𝐿𝐶𝑂𝐸 = 𝐿𝐶𝑂𝐸 +  𝐶𝑖𝑛𝑡 

Where 

𝐶𝑖𝑛𝑡 = (𝐶𝑟𝑒𝑠𝑖𝑑 − 𝐶𝐵𝑀,𝑟𝑒𝑠𝑖𝑑) 

𝐶𝑖𝑛𝑡 = 𝐶𝑟𝑒𝑠𝑖𝑑 −
𝐸𝑟𝑒𝑠𝑖𝑑

𝐸𝑡𝑜𝑡𝑎𝑙

𝐶𝑡𝑜𝑡𝑎𝑙(0) 

- 𝐶𝑟𝑒𝑠𝑖𝑑 = Cost of the 

residual system 

-  𝐶𝐵𝑀,𝑟𝑒𝑠𝑖𝑑 = Cost of 

residual system of 

benchmark technology 

- 𝐸𝑟𝑒𝑠𝑖𝑑 = Electricity 

generated from the 

residual system 

- 𝐸𝑡𝑜𝑡𝑎𝑙 = total 

Electricity generated 

- 𝐶𝑡𝑜𝑡(0) = Cost of total 

generation in case of no 

renewable energy 

System LCOE 

extends LCOE 

framework by 

incorporating 

additional system 

integration costs, 

such as grid 

expansion, balancing, 

and adequacy costs. 

 

Metrics used for environmental goals 

 Net emission minimization is another crucial goal alongside cost minimization. Thailand’s 

Power Development Plan (PDP 2018 Revision 1) outlines the country’s commitment to achieve 

carbon neutrality by 2050 and net-zero greenhouse gas emissions by 2065. This paper will 



primarily focus on CO₂ emissions as a representative metric for environmental damage. Sathaye 

et al. (2011) detailed the methodology for calculating life-cycle greenhouse gas (GHG) emissions 

using a life-cycle assessment (LCA) approach. Emissions across all phases of energy production, 

including fuel extraction, processing, transportation, plant operation, and decommissioning, are 

evaluated into CO₂ emissions per unit of electricity generation (see Figure 1). Life-cycle 

greenhouse gas (GHG) emissions refer to the total emissions produced throughout the entire 

lifespan of an energy generation system (Thurber & Verheijen, 2022; UNECE, 2022). This method 

expresses emissions in tons of CO₂ per megawatt-hour (tCO₂/MWh), enabling a direct comparison 

between different technologies. The share of renewable energy is frequently used as a key decision-

making criterion in multi-objective optimization problems (Abokersh, Cabeza, & Tulus, 2019; 

Atabaki & Aryanpur, 2018; Fischer, Elfgren, & Toffolo, 2020). 

 

Figure 1. Generalized life cycle stages for energy technologies 

 

 Source: Satheye et al. (2011) 

 

 

 

 



Table 2. Metrics for environmental objectives 

Metric Formula Variables Description 

Total Emissions (TE) 𝑇𝐸 =  ∑(𝐸𝐼𝑖  × 𝐸𝑖) - 𝐸𝐼𝑖 = CO₂ emission 

per unit of generation 

of technology i 

(tCO₂/MWh) 

- 𝐸𝑖 = Electricity 

generated from 

technology i 

 

Measures the overall 

greenhouse gas 

(GHG) emissions 

from all energy 

sources in the system. 

Renewable Energy 

Share (RES%) 
𝑅𝐸𝑆% =

𝐸𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒

𝐸𝑡𝑜𝑡𝑎𝑙
 × 100 - 𝐸𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 = 

Electricity generated 

from renewable 

sources (MWh) 

- 𝐸𝑡𝑜𝑡𝑎𝑙 = Total 

electricity generated 

(MWh) 

Represents the 

percentage of total 

energy consumption 

derived from 

renewable sources. 

 

Feasibility and operational constraint in electricity generation 

 The feasibility of the electrical grid system must also be considered to ensure that the model 

reflects the actual operation and can consistently meet demand in real time. Ignoring feasibility 

constraints may distort the optimal solution sets by favoring generation mixes that appear cost-

effective and low emission on paper but fail to meet essential operational requirements, thereby 

undermining the validity of the study’s findings. 

            Grid frequency is the rate, measured in hertz (Hz), at which the alternating current in a 

power system changes direction each second. In European countries and Thailand, the standard 

grid frequency is maintained at 50 hertz, with a frequency deadband allowing small deviations to 

ensure system stability. As most power plants in large electrical systems use synchronous 

generators, the rotational speed of the generators is directly linked to grid frequency. Hence, 

frequency deviation can imply an imbalance between electricity demand and supply. A drop in 

frequency occurs when electricity demand exceeds generation, causing generators to slow down 

due to increasing resistance. Conversely, when electricity generation exceeds demand, the reduced 

load resistance causes generators to accelerate, leading to a rise in grid frequency. 



The method of maintaining grid frequency is typically classified into two control strategies: 

isochronous control mode and droop governor control mode. Isochronous control mode will 

provide electricity at a constant frequency regardless of the load changes by adjusting the fuel 

input according to the load demand. However, isochronous control mode is only practical in an 

isolated system, where only one generator is responsible for supplying the entire system. Having 

multiple generators in isochronous control mode operating in a large, interconnected grid system 

can result in a conflict between each generator, as each generator attempts to correct frequency 

deviations independently, potentially resulting in instability and oscillations in power output. 

Therefore, the droop governor control mode is utilized in large, interconnected power systems. For 

this method, each generator is assigned a predefined droop response function, which determines 

how its power output will change in response to deviations from the nominal grid frequency. With 

multiple generators having their own response functions, the system can achieve decentralized 

frequency regulation, where load is shared proportionally among generators. Although the droop 

control method allows for grid frequency deviations, proportional load sharing among generators 

helps ensure that these deviations remain within the acceptable deadband. 

 The load categorization method offers a simplified yet effective framework for addressing 

the challenge of grid frequency balancing. Load categorization is used by an operator to accurately 

predict the changes in electricity demand according to the pattern and period of time, enabling 

them to dispatch appropriate generation technologies that can effectively respond to sudden or 

significant load variations (Ueckerdt et al., 2013; Ueckerdt & Kempener, 2015). Traditionally, 

electrical load can be classified into three categories: 

• Base load represents the minimum, continuous level of electricity demand that must be met 

throughout the day. This category is supplied by high efficiency but low flexibility 

technologies such as coal, nuclear, and hydro power plants. 

• Intermediate load corresponds to the moderate variation of demand that lies between base 

and peak load. Intermediate load is often served by moderately flexible technologies such 

as combined cycle gas turbine (CCGT), and biomass power plants. 

• Peak load covers the most drastic changes in demand over short periods of time. Addressing 

this type of load requires generation technologies with high ramping capability to respond 

quickly to sudden fluctuations in demand. It is typically met by open-cycle gas turbines 



(OCGT), hydro power plants, diesel generators, and battery energy storage systems 

(BESS). 

One widely used approach in the literature is the application of clustering algorithms, 

utilizing K-means clustering to classify electricity demand into categories such as base, 

intermediate, and peak load (Jangid, Mathruria, and Gupta, 2021; Rajabi et al., 2020; Salimi-beni, 

Farrokhzad, Fotuhi-Firuzabad, & Alemohammad, 2006). Using centroid to identify cluster means 

and applying them as cutoffs offers an easy and intuitive calculation method for classifying 

segments of the aggregate load duration curve. However, since the centroids are derived from the 

aggregate load pattern, rendering them inherently static and unable to capture real-time load 

dynamics. The Gaussian mixture method and deep learning with load-shape preservation are used 

to cluster the hourly demand patterns within a day by capturing variability and overlapping load 

behaviors (Jangid, Mathruria, & Gupta, 2021; Kim et al., 2024; Rajabi et al., 2020). Fits the load 

data using multiple Gaussian distributions, each representing a distinct load with probabilistic 

boundaries. On the other hand, the deep learning with load-shape preservation framework employs 

deep neural networks to learn latent representations of load data while explicitly preserving the 

shape and dynamics of the original time series. However, these latter two frameworks do not 

quantify the contribution of each load type, as their primary contribution lies in load forecasting. 

Although this represents an important area in electrical engineering, it falls outside the scope of 

this paper. Time series forecasting models such as ARIMA and SARIMA can provide a method 

for categorizing load by identifying seasonal patterns and utilizing the trends to distinguish normal 

demand from drastic deviations in load behavior (Minaar, Van Zyl, & Hicks, 2023). Nevertheless, 

these time series methods are incompatible with residual load forecasting and categorization 

because the residual load’s seasonal components also vary as the level of VRE integration differs. 

Due to these drawbacks, a new methodology will be introduced for load categorization that 

dynamically adjusts threshold levels. 

 

Multi-objective optimization algorithms used in energy mix problems 

 A wide range of multi-objective optimization algorithms have been employed in the energy 

mix literature to address the trade-offs between multiple objectives. Among these, two prominent 

scalarization techniques found in the literature are the epsilon-constrained method and the 



weighted sum method. The epsilon-constraint method is used to solve multi-objective optimization 

problems by optimizing one of the objectives while treating others as constraints (Javadi et al., 

2019; Jing et al., 2021; Louis et al., 2020; Murray et al., 2018; Si et al., 2019; Vergara-Zambrano 

et al., 2022; Zhang et al., 2020). The weighted sum method scalarizes a set of objectives into a 

single objective function by taking a linear combination of all objectives, each pre-multiplied by a 

predetermined weight that reflects the degree of emphasis placed on a particular goal (Gbadamosi 

and Nwulu, 2020; Groissböck and Pickl, 2016; Pratama et al., 2017; Purwanto et al., 2015). 

However, the weighted sum method struggles with non-convex Pareto fronts. There are two 

prominent metaheuristic algorithms frequently used in the literature to solve multi-objective 

energy system optimization problems: the Non-dominated Sorting Genetic Algorithm II (NSGA-

II) and Particle Swarm Optimization (PSO). NSGA-II uses non-dominated sorting to classify 

solutions into different pareto fronts based on the dominance ranking (Deb et al., 2002; Li and Qiu, 

2016; Prina et al., 2019; Uen et al., 2018; Zidan et al., 2013). The algorithm iteratively selects the 

most optimal solutions from the current population to generate new candidate solutions. 

Meanwhile, Particle Swarm Optimization (PSO) leverages collective information about the fitness 

of each candidate solution, updating each particle’s trajectory by combining its own experience 

with that of the best-performing individuals in the swarm to explore new regions of the solution 

space (Abdoos and Ghazvini, 2018; Hatamkhani and Moridi, 2019; Kennedy & Eberhart, 1995; 

Yuan et al., 2021). 

2. Methodology 

 This study utilizes hourly electricity load data for Germany in the year 2023, along with 

the cost and emission estimates associated with each generation technology to evaluate and 

optimize the electricity generation mix under multiple objectives. The simulation and optimization 

process is as follows: 

1. Hourly electricity load data for Germany in the year 2023 from European Network of 

Transmission System Operators for Electricity (ENTSO-E) is used as the baseline for 

demand profile.  

2. The generation from Photovoltaic (PV) system is simulated by using the PVlib python 

library by Holmgren, Hansen, and Mikofski (2018), which enables accurate modeling of 

PV output based on location-specific irradiance, temperature, and system configuration 



parameters. In this study, the PV system is assumed to be installed in Munich, Germany, 

with corresponding irradiance data, which measures the amount of solar energy received 

per unit area (W/m²), used to simulate hourly generation for the year 2023. 

3. The generation from wind turbine is simulated by using the windpowerlib python library 

by Haas, et al. (2024). The models simulate wind power output based on meteorological 

conditions and turbine characteristics. In this study, the wind turbine is assumed to be 

installed in Wilhelmsfeld, Germany, and hourly weather data retrieved from the Meteostat 

database for wind speed, temperature, and air pressure.  

4. Once the generation from renewable sources were simulated, residual load, which is the 

portion of demand that must be met by dispatchable generation, is calculated by subtracting 

VRE generation from hourly load data. 

5. The residual load then is clustered into 3 different load categories: base, intermediate, and 

peak load. To address the limitations from the literature review, this study develops a new 

methodology to dynamically adjust the threshold of each load category. The baseload 

threshold is defined using a 48-hour rolling 1st quantile, capturing the minimum consistent 

demand level. The peak load threshold is determined by using a 12-hour bidirectional 

exponential moving average and a 24-hour rolling 9th quantile, identifying short-duration 

but high variations in load changes. The remaining load between these two thresholds is 

classified as intermediate load. 

6. LCOE is calculated using the discounted cash flow method, which accounts for the capital 

expenditure (CAPEX), operational and maintenance (O&M) costs, fuel costs, efficiency, 

lifetime, and higher heating value (HHV), which reflects the energy conversion from heat 

to electricity. These characteristics are derived from a literature review and reflect 

technology-specific assumptions for the context of Germany. 



 

 

7. In this study, the NSGA-II is employed for multi-objective optimization. The algorithm 

defines total system cost and CO₂ emissions as objective functions, while treats the 

installed capacities of photovoltaic (PV) and wind generation as the decision variables. The 

algorithm evaluates each combination of PV and wind capacity across 400 populations 

over 100 generations, resulting in 40,000 evaluated combinations.  

3. Results 

To test for the validity of the results, convergence indicators are monitored through the 

epsilon indicator (eps) and the hypervolume indicator. The epsilon indicator measures the relative 

distance between the prior Pareto front and a new one. As shown in the log (Figure 2), the epsilon 

indicator consistently decreases and stabilizes at 0.0013 from generation 20 onward, signifying 

that the Pareto front converges. The hypervolume can be interpreted as a Riemann sum of the 

volumes between each point on the Pareto front and a predefined reference point in the objective 

space. Based on figure 3, the hypervolume stabilizes after the 20th generation, indicating that the 

solution set has converged and is no longer expanding in the objective space. 

 

 

 

 

 



Figure 2. Optimization log 

 

Figure 3. Hypervolume 

 

 After the algorithm is finished, the final Pareto front is obtained (Figure 4), representing 

the set of most efficient trade-off solutions in which cost, and emissions cannot be improved 

without causing a deterioration in the other. From the Pareto frontier, the cost-emission trade-off 

can be described as having a linear relationship. The Ordinary Least Squares (OLS) regression 



shows a statistically significant negative slope, with a coefficient of –0.0117, indicating that a 

reduction of 0.0117 tons of CO2 equivalent per megawatt-hour of electricity generation can be 

achieved by increasing the system cost by 1 Euro per megawatt-hour (Figure 5). 

 

Figure 4. Final pareto-front 

 

Figure 5. OLS regression results estimating the trade-off between cost and emissions along the 

pareto frontier 

 

 To predict the energy mix, a polynomial regression model is adopted to the observations 

on the Pareto front in order to estimate the corresponding generation shares, emissions, and system 

cost for any given level of VRE integration along the trade-off curve. The selection of the most 

appropriate polynomial degree model for each technology was validated by the Bayesian 

Information Criterion (BIC). Figure 6 demonstrates the generation share of each technology within 

the Pareto front depending on the level of VRE integration in the system. 



Figure 6. Polynomial Regression Fits for Generation Shares 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7 illustrates the significance of incorporating integration cost into the calculation of 

energy generation when there is an increasing share of renewable energy in the system. Without 

taking integration cost into consideration, the cost of electricity generation can be misleading and 

may result in distorted assessments of system affordability. According to figure 7, the integration 

cost can approach up upto 25 percent of the total system cost at 40 percent renewable energy 

integration. A significant increase in integration costs can be observed at 25 percent of VRE 

integration in the system due to VRE generation becoming extremely prominent during periods of 

resource availability but unable to supply during resource-scarce periods. As a result, the system 

must increasingly rely on flexible generation technologies to ensure reliability. Consequently, a 

decrease in coal share and an increase in CCGT and gas turbine share can be observed in figure 6. 



Figure 7. Magnitude of integration cost depending on renewable energy share 

 

 

 

 

 

 Another important implication derived from this study is that the cost profile of each 

generation technology evolves in response to the increasing share of VRE in the system. Capacity 

factors, which are the ratio of actual output to potential output, are important to the economic 

viability of a generation technology. According to figure 8 on the left panel, the capacity factor, 

especially for less flexible generation types like coal generation, becomes significantly less 

economical as VRE share increases. This reduction occurs because coal-fired plants, which are 

designed for steady baseload operation, are increasingly displaced during periods of high solar and 

wind output, forcing them to operate below optimal load levels or remain idle for extended 

durations. Nevertheless, the cost of generation from CCGT and gas turbines, which are more 

flexible to load changes, is less impacted. This also implies that future energy policy should 

incorporate these dynamics into transitional mechanisms such as carbon taxation and carbon credit 

schemes, as the cost of certain technologies can increase significantly with higher VRE integration. 

By utilizing operational constraints, the cost of higher-emissions technologies can become less 

economical as their limited flexibility leads to reduced utilization under increasing shares of 

variable renewable energy. 

 

 

 

 

 

 



Figure 8. Capacity Factors and LCOE across level of VRE integration 

 

 

 

 

 

 

4. Discussions 

Since this study uses data from Germany as a case study for energy mix optimization, 

certain adjustments are necessary to apply the methodology to the context of Thailand. The 

specification of each technology must be conducted in the context of Thailand, as differences in 

technological advancements, resource endowments, and infrastructure can influence the cost of 

that technology in a specific country. Moreover, calculating system costs by decomposing each 

component of the cost is highly encouraged rather than using fixed LCOE assumptions from 

external sources. As demonstrated by this study, LCOE is not a fixed metric; it is highly sensitive 

to variations in capacity factor, which can fluctuate significantly depending on system conditions, 

resource availability, and the level of renewable energy integration. Using a static cost structure 

will diminish the interpretation regarding the cost dynamic. 

One important point to note is that while the Pareto front derived from this study identifies 

the optimal energy mixes that achieve the most efficient trade-offs between cost and emissions, it 

does not demonstrate a transitional pathway. A practical transitional plan needs to account for 

existing infrastructure, sunk costs, and the irreversibility of past capital investments. Based on this 

limitation, future studies are recommended to incorporate constraints regarding capital 

investments such that a sequence of investment and operational decisions will be internalized in 

the model. 



5. Conclusion 

This study developed an integrated framework to determine the optimal electricity 

generation mix that minimizes both cost and emissions under operational constraints, using the 

German power system as a case study. The new methodology for dynamic load categorization has 

also been introduced to overcome the limitations of the static load categorization method. Using 

the NSGA-II multi-objective optimization algorithm, the research identifies the Pareto-efficient 

front that highlights the best trade-offs between total system cost and CO₂ emissions. The results 

show that integration costs have a significant impact on overall generation costs, especially as the 

level of VRE penetration increases. The integration costs can account for up to 25 percent of total 

electricity generation costs at 40 percent VRE shares, highlighting the importance of incorporating 

these costs into the traditional LCOE metric.  

The most efficient energy mix highlights a trade-off between cost and emissions that 

follows a nearly linear pattern, with approximately 6 kilograms of CO₂ per megawatt-hour reduced 

for every 1 Euro increase in system cost. 

Key insights from this study include the observation that the cost of electricity generation 

cannot be calculated by using static LCOE because the cost of each technology dynamically shifts 

with changes in renewable penetration. Technologies with low operational flexibility, such as coal, 

become increasingly uneconomical due to declining capacity factors when displaced by solar and 

wind generation. In contrast, more flexible technologies like combined cycle gas turbines (CCGT) 

and open-cycle gas turbines (OCGT) could maintain their economic viability. 

Furthermore, this study demonstrated the usefulness of calculating LCOE through 

decomposed cost components rather than applying constant LCOE assumptions. This approach 

captures the cost dynamics resulting from fluctuating utilization levels, providing a more accurate 

picture of electricity generation costs under different energy mixes. 

In conclusion, this study contributes to the literature on energy mix optimization by 

incorporating integration costs and operational constraints. These findings can inform 

policymakers and energy planners in designing more robust, cost-effective, and environmentally 

aligned electricity systems. 
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